Recurrent Jacobi Operator of Real Hypersurfaces in Complex Two-plane Grassmannians

نویسندگان

  • Imsoon Jeong
  • Juan de Dios Pérez
  • Young Jin Suh
  • IMSOON JEONG
  • JUAN DE DIOS
  • YOUNG JIN SUH
چکیده

In this paper we give a non-existence theorem for Hopf hypersurfaces in the complex two-plane Grassmannian G2(C) with recurrent normal Jacobi operator R̄N .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypersurfaces of a Sasakian space form with recurrent shape operator

Let $(M^{2n},g)$ be a real hypersurface with recurrent shapeoperator and tangent to the structure vector field $xi$ of the Sasakian space form$widetilde{M}(c)$. We show that if the shape operator $A$ of $M$ isrecurrent then it is parallel. Moreover, we show that $M$is locally a product of two constant $phi-$sectional curvaturespaces.

متن کامل

Differential Geometry of Real Hypersurfaces in Hermitian Symmetric Spaces with Rank 2 Jürgen Berndt and Young

In this talk, first we introduce the classification of homogeneous hypersurfaces in some Hermitian symmetric spaces of rank 1 or rank 2. In particular, we give a full expression of the geometric structures for hypersurfaces in complex two-plane Grassmannians G2(C) or in complex hyperbolic twoplane Grassmannians G2(C). Next by using the isometric Reeb flow we give a complete classification for h...

متن کامل

Hypersurfaces with Isometric Reeb Flow in Hermitian Symmetric Spaces of Rank 2

In this talk, first we introduce the classification of homogeneous hypersurfaces in some Hermitian symmetric spaces of rank 1 or rank 2. In particular, we give a full expression of the geometric structures for hypersurfaces in complex two-plane Grassmannians G2(C) or in complex hyperbolic twoplane Grassmannians G2(C). Next by using the isometric Reeb flow we give a complete classification for h...

متن کامل

Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie ξ - parallel

We classify real hypersurfaces in complex projective spaces whose structure Jacobi operator is Lie parallel in the direction of the structure vector field.  2004 Elsevier B.V. All rights reserved.

متن کامل

Jacobi operators along the structure flow on real hypersurfaces in a nonflat complex space form

Let M be a real hypersurface of a complex space form with almost contact metric structure (φ, ξ, η, g). In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator Rξ = R(·, ξ)ξ is ξ-parallel. In particular, we prove that the condition ∇ξRξ = 0 characterizes the homogeneous real hypersurfaces of type A in a complex projective space or a complex hyperbolic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013